
m Fermi National Accelerator Laboratory 

FERMILAB-Pub-78/61-THY 
July 1978 

Method for Solving the Massive Thirring Model 

H. BERGKNOFF and H.B. THACKER 
Fermi National Accelerator Laboratory, Batavia, Illinois 60510 

ABSTRACT 

The Hamiltonian of the massive Thirring model is explicitly diagonalized by 

formulating a Bethe ansatz for the eigenstates. A general method for computing 

the energy spectrum is presented. 
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The massive Thirring model is the theory of a self-coupled massive fermion 

field I$ in two dimensions described by the Lagrangian 

-%&‘a $-mo&-&gj’j 
I-r IJ’ 

where j’ = )i [$,v’$] is the fermion current. The 

massless case m. = 0 is exactly soluble and has been extensively analyzed. More 

recently, considerable evidence has gathered to support the belief that the general 

case with non-zero mass is also an exactly soluble theory. Much of this evidence 

hinges on the equivalence between the massive Thirring model and the quantum 

sine-Gordon theory.’ At the classical level, the latter theory is exactly integrable 

by inverse scattering techniques’and is found to possess an infinite number of 

conservation laws. Exact results for the quantized bound state spectrum3 and S- 

matrix4 attest to a corresponding set of conservation laws in the quantum theory. 

Moreover, by studying a simpler theory (the nonlinear Schradinger equation), it has 

been argued’ that the existence of an infinite number of conservation laws in a 

two-dimensional field theory is intimately related to the success of a Bethe ansatz 

as a means of diagonalizing the Hamiltonian of the theory. These arguments 

suggest that the Bethe ansatz technique might also provide a solution to the 

massive Thirring model. A different approach which leads to the same attitude is 

provided by the work of Luther.6 He pointed out that the massive Thirring model 

may be considered as the continuum limit of the anisotropic Heisenberg (XYZ) spin 

chain, with the fermions being identified with spin waves via a Jordan-Wigner 

transformation. This led Luther to the remarkable observation that, in the 

approprrate limrt, the bound state spectrum of the XYZ chain7 was identical to the 

WKB sine-Gordon doublet spectrum.3 The treatment of the XYZ Hamiltonian is 

based on its connection with the transfer matrix of the g-vertex lattice (Baxter 

model). The methods of Baxter8 may be described as a generalization of the Bethe 

ansatz technique. Thus, the solutions of both the classical sine-Gordon equation 
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and the Baxter model suggest a certain strategy for solving the massive Thirring 

model. With these motivations we .have formulated an exact treatment of the 

massive Thirring model which provides an explicit diagonalization of the HamiJ- 

tonian and a method for computing the energy eigenvalue of any physical state. 

The techniques we employ are largely inspired by the elegant treatment of the S- 

vertex model by Baxter’ and by Johnson, Krinsky, and McCO~.~ However, by 

remaining within the continuum field theory, we achieve a considerable degree of 

simplicity in comparison with the corresponding lattice methods. The relationship 

between our formalism and that of the X-vertex model will be considered elsewhere 

along with a more detailed discussion of the method presented here. 

Choosing a basis in which y5 is diagonal, we write the Hamiltonian 

+ 2golJ: 4J2+ 496, i 

Here we have normal ordered H with respect to an unphysical state (denoted ) O>) 

which is annihilated by the field operator, i.e. $,(x)( O> = J, (x) 10, = 0. 
2 The 

transition from 1 0 > to the physical vacuum 1 n> is accomplished by filling the 

Dirac sea. Consider first the Hamiltonian Ho for free massive fermions, go = 0. 

t This is diagonalized by introducing momentum space operators a Ik and a;k and per- 

forming a Bogoliubov rotation which mixes them by an angle 0 k where 

cot 20k = k/m0 Eigenstates of Ho are formally constructed upon 1 0 > by repeated 

2K application of the rotated operators which carry energies +(k2 + m. ) . In 

particular, the physical vacuum is the state with all negative energy modes filled. 

Introducing the rapidity 5, where k = m. sinh 5 and identifying each filled mode 

with a point in the complex 5 plane, the vacuum state may be visualized as a 
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distribution of points along the line 8 = o + in. (Here and elsewhere, o is real.) 

The density of points along this line is determined by imposing periodic boundary 

conditions in a box of length L and letting L + 0~. 

We will now diagonalize the full Hamiltonian (1) by the ansatz 

I@(5 l,...,6Nb = J-dxl N t . ..d~ (X, 6 ) i=: A (Bi, xi) IO’ 

where 

A+(@, x) = cos e(B) $:(x) + sin 8 (13) $(x1 

(2) 

(3) 

with cot 213 (8) = sinh f3, and the wave function x is given by 

N 
x(x, 6) = exp i ii, mOxisinh gi 1 1 + i X(Bi, 0 j)E (xi - xj) I 

3 

(4) 

where c(x) is a step function. By applying the Hamiltonian to the state (2) we find 

that, with an appropriate choice of the function h(Bi, B j), it is an eigenstate, 

HI @( q,..., Q’ = m. cash Bi 1 I@(5 ,,...,BN)' * (5) 

To show (51, we proceed as we would in the free fermion case, using integration by 

parts to apply the x derivative in the kinetic energy operator to the wave function. 

The derivative of the exponential factor in (4) combines with terms from the mass 

operator to give the right hand side of (5). The x derivative also produces leftover 

terms from the x dependence of the factor in curly brackets in eq. (4) which are of 
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the same form as those from the interaction. The leftover terms from the kinetic 

energy operator completely cancel the interaction terms provided that 

X( q, b2) g x(BI - B2)=-gotanh fi(bl - ~~1. This corresponds to a two-body phase 

shift 

$(B) = 2 tan-’ X(E) = 2 tan-’ I cot )1 tanh % @} 

-si,nhY&-2ipl 
smh H(f3 + 2i d } (6) 

where we have defined a constant p= -cot -I 
80’ 

To study the spectral properties of the model, we must impose periodic 

boundary conditions (PBC’s) on the wave functions (4) by requiring that 

x(xi = 0) = x(xi = L). This leads to N conditions on the B i’s, 

exp { - imOLsinh6 i / = exp i jjl $(Bi -B j) 
I 

i = l,...,N . (7) 

A detailed analysis of the PBC’s (7), leading to the results described here, will be 

presented elsewhere. We can choose all B’s to lie in the strip - TI <Im 5 5 1~. As in 

the free fermion case, the physical vacuum has all B’s along the in line, 6 = c( + in. 

The log of (7) reads 

N 
-moLsinhBi = 1 $(B,- Bj)+2nni , i = 1, . . . . N . 

j=l 
(8) 

For the vacuum state, the distribution along the in line contains no holes, i.e. 

n. 1+1 = ni + 1. We will always remain in the neutral charge sector, where excited 

states are obtained by removing points from the ia line and placing them in 

configurations which satisfy the PBC’s. These configurations are referred to as “n- 

strings,l17 with n = I, 2, . . . For L + man rr;string is a row of points in the rapidity 
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plane at values fi, = as i i(l(n - ti with 9. = (n - I), (n - 3), . . . . -(n - 1). To discuss 

the structure of these excitations, we divide the range of coupling into regions 

labelled by an integer r, where rz/(r + 1) < u <(r + l)s/(r + 2). In region r, the n- 

strings which are allowed by the PBC’s satisfy n c r + 2. Each of the two longest 

strings, n = r + 2 and n = r + I, is required by the PBC’s to have at least (n - 2) holes 

directly above it at os + in. These are states of an unbound fermion-antifermion 

pair. Each of the other allowed strings, n ( r, is required by the PBC’s to have ~JJ 

of its n holes directly above it. These n-string + n-hole excitations for n 2 r, are 

the fermion-antifermion bound states of the model. It is interesting to note that the 

limit u -c (r + -) corresponds to the weak coupling limit of sine-Gordon theory.’ In 

this limit the elementary fermions are represented by n-strings with very large n. 

The correspondence between similar structures (n-body bound states for large n) 

and classical solitons has been discussed in the context of the nonlinear Schrodinger 

equation. ’ ’ 

To compute the energy of a physical state, we note that, in the vacuum, the 

points along the in line approach a continuous distribution p(a) as L + m, whereupon 

rapidity sums are replaced by integrals. A Linear integral equation for the vacuum 

state distribution ,$a) is obtained by subtracting adjacent PBC’s (8), which gives 

mOcosha = I* ddK(a -a’)da’) + ?-w(a) 
-A 

, 

where K(o) = d$/da Here we introduce a rapidity cutoff A which will be taken to 

infinity after mass renormalization. For an excited state, the presence and 

location of holes along the in line is determined by the choice of nils in (8). 

Consider the PBC for point 9. along the in line. Let op. and aIl’ be the real part of 

its rapidity value in the vacuum and in an excited state respectively. The 

difference (a ' p. - a$ is of order l/L, so we define WI1 = (aI1’ - aQ)L. As L+ 0~) the 

w is approach a continuous function w(a). By subtracting the vacuum PBC from 

the excited state PBC, and using eq. (s we obtain an integral equation for the 

quantity F(a) q w(a) o(a), 
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2*&J+ !l K(a-a’)F(a’)da’ = 7 $(a+ilr-Bt))- y +(a+in-Bkh)) 
L=l !L=l 

: Q(‘)(a) - 0 (h)(a) 
n n (IO) 

Here n is the number of points removed from the in line to form the excitation. 

We have let A + m since the integral is found to be convergent. For a single n- 

string, the first sum in (IO) is over the B’s of the string and the second sum is over 

the holes which are left in the irr line. By the previous discussion, if n’ r we must 

have 8 I”) = 13~) = . . . = Br) q i* +a s. (Of course, these correspond to n different 

modes in a finite size box which are infinitesimally spaced as L + -.) For n = r + 1 

or r + 2, the holes are located at 1 = III + aI, 2 5 (h) 5 (h) = in + a 

@L 
2’ 

. . . =B(N 
n =17r+a 

S’ 

The physical energies are computed by noting eq. (5) and subtracting vacuum 

state from excited state eigenvalues, 

En= y 
k-1 

mOcosh BQ(‘) - f mOcosh BF) + B 
11=1 n ’ (II) 

where 

Bn = m. Ilsinh a Fir )da = m. Irn dy&y) lAeiaysinh a da (12) 
-m -A 

and F(y) is the Fourier transform of F(a). Eq. (12) represents a “backflow” of the 

Dirac sea. Other conserved quantities such as momentum may be calculated in a 

similar way. The equation (IO) is solved by Fourier transformation which gives 

F(Y) = & [ 1 + K(y) 1-q iyy, -i p(,,> . (13) 

- 
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The transform of the kernel is “K(y) = sinh[ (a - 2$y l/sinh sy. The first sum in eq. 

(IO) simplifies by a property of the phase shift (61, giving 

%(S)(y) = L [ G (y) + c 
n lY n-l n+l 0,) - 1 ‘OLsy n e n <r - 

= -&T i G,.,-,(Y) + H,+,(y) - (n - 2) } e 
ia,Y 

n = r+l, r+2 

where 

G,(y) = sinh[n(n -u )y l/sinh ny f 

H,,(y) = sinh[ n(n -u )y - 2ny ]/sinhs y . 

The hole sum gives 

(15) 

(16) 

0 py) = + (se;: $)y I) [ (n - 2)e 
ia,Y ialy 

+ e + e 
ia2Y 1 , (17) 

where a I =a 2 = as if n( r. The y integral in (12) is dominated by its nearby 

singularities. The poles at y = i i give a contribution which exactly cancels the first 

two terms in eq. (1 I). The other nearby poles at y = f iy where y = *&I provide 

the exact expression for the energy.9 Other pole residues vanish exponentially as 

A + -. Defining the physical mass 10 

I 

e(l -y)h 
m = m. mj tan ny 

i 
, (18) 

we find 
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En = m cash ya, + m cash yg , n = r+l, r+2 9 (19) 

En = Zmsinb(Zy - 11 coshya, , ncr . (20) 

In the rest frame as = 0, eq. (20) gives the familiar sine-Gordon doublet spectrum 

of Ref. 3. The constant u is related to the g of Ref. 1 by 2 u = n(2g + s)/(g + II ). 

By a similar calculation, the momentum is 

Pn = m sinh yal + m sinh ya2, n = r+l, r+2 , (21) 

Pn = 2m sin p$(Zy - 14 sinh yo,, n( r . (22) 

We have described an exact diagonalization of the massive Thirring model 

Hamiltonian. The method presents attractive possibilities for further study of the 

Thirring model as well as other field theories which are proven or conjectured to 

have an infinite number of conservation laws. The explicit expressions for eigen- 

states, eqs. (2)-(4), provide a new approach to the study of Green’s functions, reducing 

the question to a difficult but perhaps tractable problem of calculating inner products 

of Bethe wave functions. 

We are grateful to W.A. Bardeen for many helpful conversations. One of us 

(HBT) would like to thank the Aspen Center for Physics where some of this work 

was carried out. 
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